Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy.

نویسندگان

  • Yunqing Li
  • Fadila Guessous
  • Charles DiPierro
  • Ying Zhang
  • Tucker Mudrick
  • Lauren Fuller
  • Elizabeth Johnson
  • Lukasz Marcinkiewicz
  • Matthew Engelhardt
  • Benjamin Kefas
  • David Schiff
  • Jin Kim
  • Roger Abounader
چکیده

The tyrosine kinase receptor c-Met and its ligand hepatocyte growth factor (HGF) are frequently overexpressed and the tumor suppressor PTEN is often mutated in glioblastoma. Because PTEN can interact with c-Met-dependent signaling, we studied the effects of PTEN on c-Met-induced malignancy and associated molecular events and assessed the potential therapeutic value of combining PTEN restoration approaches with HGF/c-Met inhibition. We studied the effects of c-Met activation on cell proliferation, cell cycle progression, cell migration, cell invasion, and associated molecular events in the settings of restored or inhibited PTEN expression in glioblastoma cells. We also assessed the experimental therapeutic effects of combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition. PTEN significantly inhibited HGF-induced proliferation, cell cycle progression, migration, and invasion of glioblastoma cells. PTEN attenuated HGF-induced changes of signal transduction proteins Akt, GSK-3, JNK, and mTOR as well as cell cycle regulatory proteins p27, cyclin E, and E2F-1. Combining PTEN restoration to PTEN-null glioblastoma cells with c-Met and HGF inhibition additively inhibited tumor cell proliferation and cell cycle progression. Similarly, combining a monoclonal anti-HGF antibody (L2G7) with the mTOR inhibitor rapamycin had additive inhibitory effects on glioblastoma cell proliferation. Systemic in vivo delivery of L2G7 and PTEN restoration as well as systemic in vivo deliveries of L2G7 and rapamycin additively inhibited intracranial glioma xenograft growth. These preclinical studies show for the first time that PTEN loss amplifies c-Met-induced glioblastoma malignancy and suggest that combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition is worth testing in a clinical setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacogenomic Profiling of the PI3K/PTEN Pathway in Sporadic Breast Cancer

Background: Pharmacogenomics is the study of genetic variations among individuals to predict the probability that a patient will respond to single or multidrug chemotherapy. Breast cancer is one of the most common cancers among women worldwide. Treatment of breast cancer by application of biological rationales gives us the ability to match the correct pharmacology to individual tumour genetic p...

متن کامل

Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells.

The epidermal growth factor receptor (EGFR) is commonly amplified, overexpressed, and mutated in glioblastoma, making it a compelling molecular target for therapy. We have recently shown that coexpression of EGFRvIII and PTEN protein by glioblastoma cells is strongly associated with clinical response to EGFR kinase inhibitor therapy. PTEN loss, by dissociating inhibition of the EGFR from downst...

متن کامل

EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts.

Receptor tyrosine kinase (RTK) systems, such as hepatocyte growth factor (HGF) and its receptor c-Met, and epidermal growth factor receptor (EGFR), are responsible for the malignant progression of multiple solid tumors. Recent research shows that these RTK systems comodulate overlapping and dynamically adaptable oncogenic downstream signaling pathways. This study investigates how EGFRvIII, a co...

متن کامل

PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1

Glioblastoma multiforme is an aggressive and incurable type of brain tumor. A subset of undifferentiated glioblastoma cells, known as glioblastoma tumor initiating cells (GTICs), has an essential role in the malignancy of this disease and also appears to mediate resistance to radiation therapy and chemotherapy. GTICs retain the ability to differentiate into cells with reduced malignant potentia...

متن کامل

Rhabdoid glioblastoma is distinguishable from classical glioblastoma by cytogenetics and molecular genetics.

The clinicopathologic and molecular genetic features of 5 cases of rhabdoid glioblastoma, an extremely rare variant of glioblastoma that tends to affect patients at a young age, were investigated by immunohistochemical analysis and focused molecular genetic studies including array-based comparative genomic hybridization. All 5 cases had supratentorial tumors that immunohistochemical analysis re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2009